Klasifikasi Pisang Berbasis Algoritma VGG16 Melalui Metode CNN Deep Learning

نویسندگان

چکیده

Pisang cavendish banyak dikonsumsi di Indonesia dan berpotensi menjadi komoditas utama Indonesia. Namun, proses pemilihan kualitas pisang masih yang dilakukan secara tradisional. Hal ini penghambat dalam utama. Klasifikasi mutu modern dapat untuk memperbaiki seleksi meningkatkan penjualan sektor pertanian. Peningkatan sector pertanian akan menjadikan sebagai ekonomi Metode deep learning yaitu CNN dengan model VGG16 diimplementasikan solusi dari permasalahan tersebut. Peneliti mencoba menggunakan berbagai jumlah epoch mendapatkan hasil evaluasi terbaik. Variabel dibagi 5 total kumpulan data gambar adalah 550. Kumpulan juga latihan tes persentase 70%: 30%. Hasil eksperimen menunjukkan performa terbaik pada 50 akurasi train 98.96% test 83.53%. Model disimpan digunakan oleh para pelaku industri

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Marginalized CNN: Learning Deep Invariant Representations

Training a deep neural network usually requires sufficient annotated samples. The scarcity of supervision samples in practice thus becomes the major bottleneck on performance of the network. In this work, we propose a principled method to circumvent this difficulty through marginalizing all the possible transformations over samples, termed as marginalized Convolutional Neural Network (mCNN). mC...

متن کامل

Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning

In recent years, Convolutional Neural Networks (CNNs) have shown remarkable performance in many computer vision tasks such as object recognition and detection. However, complex training issues, such as “catastrophic forgetting” and hyper-parameter tuning, make incremental learning in CNNs a difficult challenge. In this paper, we propose a hierarchical deep neural network, with CNNs at multiple ...

متن کامل

Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps

Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Network (GQ-CNN) trained on the DexNet 2.0 dataset [15].We propose a new architecture for the GQ-CNN and describe practical improvements that increase...

متن کامل

Image similarity using Deep CNN and Curriculum Learning

Image similarity involves fetching similar looking images given a reference image. Our solution called SimNet, is a deep siamese network which is trained on pairs of positive and negative images using a novel online pair mining strategy inspired by Curriculum learning. We also created a multi-scale CNN, where the final image embedding is a joint representation of top as well as lower layer embe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: INFORMASI

سال: 2023

ISSN: ['0126-0650', '2502-3837']

DOI: https://doi.org/10.37424/informasi.v15i1.190